支持向量机(support vector machine,简称SVM)于1964年由Vapnik和Chervonenkis建立,在上世纪90年代获得快速发展并衍生出一系列改进和扩展算法,在人像识别、文本分类、手写字识别及生物信息学等领域获得广泛应用。
class SMO(object):  def __init__(self, C = 100, toler = 0.001, maxIter = 10000):    self.C = C    self.tol = toler    self.maxIter = maxIter        def fit(self, X, y):    self.X, self.y = X, y    self.n_samples = len(X)    self.alphas = np.zeros(self.n_samples, dtype = float)    self.b = 0.    self.Error = np.zeros_like(self.alphas)    self.iterNum = 0    iterNum = 0    examineAll = True    alphaChanged = 0    while iterNum < self.maxIter and (alphaChanged > 0 or examineAll == True):      alphaChanged = 0      if examineAll:        for i in range(len(self.X)): alphaChanged = self._innerLoop(i)        iterNum = 1        examineAll = False      else:        nonBoundInd = np.nonzero((self.alphas > 0) * (self.alphas < self.C))[0]        for i in nonBoundInd: alphaChanged = self._innerLoop(i)        iterNum = 1        if alphaChanged == 0: examineAll = True    self.iterNum = iterNum    return self  def _innerLoop(self, i):    Ei = self.updateError(i)    if (((Ei * self.y[i] < -self.tol) and (self.alphas[i] < self.C)) or       ((Ei * self.y[i] > self.tol) and (self.alphas[i] > 0))):      j = self.selectJ(i)      Ej = self.Error[j]      alphaIold, alphaJold = self.alphas[i], self.alphas[j]      if self.y[i] != self.y[j]:        L = max(0, alphaIold - alphaJold)        H = min(self.C, self.C  alphaIold - alphaJold)      else:        L = max(0, alphaJold  alphaIold -self.C)        H = min(self.C, alphaJold  alphaIold)      if H == L: return 0      Kii, Kij, Kjj = (self.K(self.X[i], self.X[i]), self.K(self.X[i], self.X[j]), self.K(self.X[j], self.X[j]))      eta = Kii  Kjj - 2 * Kij      if eta <= 0: return 0      self.alphas[i] = self.y[i] * (Ej - Ei)/eta      if self.alphas[i] <= L:         self.alphas[i] = L      elif self.alphas[i] >= H:         self.alphas[i] = H      if np.abs(self.alphas[i] - alphaIold) < 1.e-10: return 0      self.alphas[j] = self.y[j] * self.y[i] * (alphaIold - self.alphas[i])      b0 = (self.b - Ej - self.y[j] * Kjj * (self.alphas[j] - alphaJold) -          self.y[i] * Kij * (self.alphas[i] - alphaIold))      b1 = (self.b - Ei - self.y[j] * Kij * (self.alphas[j] - alphaJold) -          self.y[i] * Kii * (self.alphas[i] - alphaIold))      if 0 < self.alphas[j] < self.C: self.b = b0      elif 0 < self.alphas[i] < self.C: self.b = b1      else: self.b = (b0  b1) / 2      return 1    else: return 0        def selectJ(self, i):    j = 0    maxDeltaE = -1.    priorIndices = np.nonzero(self.Error)[0]    if len(priorIndices) > 1:      for k in priorIndices:        if k == i: continue        Ek = self.updateError(k)        deltaE = np.abs(Ek - self.Error[i])        if deltaE > maxDeltaE: j, maxDeltaE = k, deltaE      return j    else:      j = np.random.choice([k for k in range(self.n_samples) if k != i])      self.updateError(j)      return j      def updateError(self, i):    fxi = np.sum(self.alphas * self.y * np.array([self.K(self.X[i], self.X[j]) for           j in range(self.n_samples)]))  self.b    self.Error[i] = fxi - self.y[i]    return self.Error[i]  def K(self, Xi, Xj):    return np.sum(Xi * Xj)    def predict(self, testX):    num = len(testX)    y_pred = np.ones(num, dtype = int)    for i in range(num):      fxi = np.sum(self.alphas * self.y * np.array([self.K(testX[i], self.X[j]) for              j in range(self.n_samples)]))  self.b      if fxi < 0: y_pred[i] = -1    return y_pred       

 
  
					
				
评论